Abstract:Cervical Cancer is one of the most common forms of cancer in women worldwide. Most cases of cervical cancer can be prevented through screening programs aimed at detecting precancerous lesions. During Digital Colposcopy, Specular Reflections (SR) appear as bright spots heavily saturated with white light. These occur due to the presence of moisture on the uneven cervix surface, which act like mirrors reflecting light from the illumination source. Apart from camouflaging the actual features, the SR also affects subsequent segmentation routines and hence must be removed. Our novel technique eliminates the SR and makes the colposcopic images (cervigram) ready for segmentation algorithms. The cervix region occupies about half of the cervigram image. Other parts of the image contain irrelevant information, such as equipment, frames, text and non-cervix tissues. This irrelevant information can confuse automatic identification of the tissues within the cervix. The first step is, therefore, focusing on the cervical borders, so that we have a geometric boundary on the relevant image area. We have proposed a type of modified kmeans clustering algorithm to evaluate the region of interest.
Abstract:Uterine Cervical Cancer is one of the most common forms of cancer in women worldwide. Most cases of cervical cancer can be prevented through screening programs aimed at detecting precancerous lesions. During Digital Colposcopy, colposcopic images or cervigrams are acquired in raw form. They contain specular reflections which appear as bright spots heavily saturated with white light and occur due to the presence of moisture on the uneven cervix surface and. The cervix region occupies about half of the raw cervigram image. Other parts of the image contain irrelevant information, such as equipment, frames, text and non-cervix tissues. This irrelevant information can confuse automatic identification of the tissues within the cervix. Therefore we focus on the cervical borders, so that we have a geometric boundary on the relevant image area. Our novel technique eliminates the SR, identifies the region of interest and makes the cervigram ready for segmentation algorithms.
Abstract:This paper has been withdrawn